NeMo user manual

Andreas K. Fidjeland (andreas.fidjeland@imperial.ac.uk)

December 12, 2011 Version 0.7.1

Abstract

NeMo is a library for discrete-time simulation of spiking neural net-
works. It is aimed at real-time simulation of tens of thousands of neurons
on a single workstation. NeMo runs on parallel hardware; In particular it
can run on CUDA-enabled GPUs. No parallel programming is required,
however, on the part of the end user, as parallelisation is handled by the
library. The library has interfaces in C++, C, Python, and Matlab.

1 A short tutorial introduction

The NeMo library can be used to simulate a network of point neurons. The
library can support different types neuron models via a plugin-system. The
current version of the library ships with support for Izhikevich neurons [2] and
Kuramoto oscillators.

The library exposes three basic types of objects: network, configuration, and
simulation. Setting up and running such a simulation involves:

1. Creating a network object and adding neurons and synapses;
2. Creating a configuration object and setting its parameters as appropriate;

3. Creating a simulation object from the network and configuration objects
and running the simulation.

The following section illustrates basic usage of the library using the Python
interface. The other language interfaces (Section 3) have similar usage.

1.1 Constructing a network

Network construction is performed using a low-level interface where neurons
and synapses are added individually. The Python and Matlab APIs have vector
forms for some functions, but fundamentally each neuron and synapse must be

mailto:andreas.fidjeland@imperial.ac.uk

individually specified. Higher-level construction interfaces, e.g. using various
forms of projections, can be built on top of this, but is not part of NeMo.

Each neuron is specified in terms of its neuron type, a user-specified index, a
list of parameters, and a list of initial values for state variables. The number of
parameters and state variables varies between neuron types. To create neurons
of a specific type, the neuron type must be registered with the network. The
following creates 1000 Izhikevich neurons with some variation in parameters:

net = nemo.Network ()
iz = net.add_neuron_type(’Izhikevich’)

excitatory meurons

re = random.random () **2

c = -65.0+1b*re

d = 8.0 - 6.0%xre

net.add_neuron(iz, range(0,800), 0.02, 0.2, c, d, 5.0, 0.2xc,

inhibitory meurons

ri = random.random ()

a = 0.02+0.08*ri

b = 0.25-0.05*ri

c = -65.0

net.add_neuron(iz, range(800,1000), a, b, ¢, 2.0, 2.0, b*c, c)

Note that the add_neuron functions accepts a mix of scalars and vectors. The
C++ and C API has scalar versions only. For the meaning of the parameters,
refer to the documentation for the Izhikevich model.

Synapses can be added by specifying the source and target neurons as well as the
weight, conductance delay (in milliseconds), and a plasticity flag. For example,
to create all-to-all static connections with a delay of one between the neurons
defined above:

exzcitatory connections

for nidx in range (0,800):
targets = range (1000)
weights = [0.5*random.random() for tgt in targets]
net.add_synapse (nidx, targets, 1, weights, False)

inhibitory connections
for nidx in range (800, 1000):

r = random.random ()
targets = range (1000)
weights = [-random.random() for tgt in targets]

net.add_synapse (nidx, targets, 1, weights, False)

1.2 Creating a configuration

The configuration object specifies simulation-wide parameters, such as a global
STDP function (disabled by default). It also specifies which of the available

backends will be used. In many cases a default configuration can be used.

conf = nemo.Configuration ()

A default-constructed configuration object will choose the best backend, but if
a specific backend is desired the user can set this explicitly:

conf .set_cuda_backend () ;

or

conf .set_cpu_backend () ;

1.3 Creating and running a simulation

We can now create a simulation object from the network and configuration
objects.

sim = nemo.Simulation(net, conf)

The simulation is run by stepping through it one millisecond-sized step at a
time, getting back a vector of fired neuron indices for each call. So, to run for
a second:

for t in range (1000):
fired = sim.step ()

We can also provide external stimulus to the network, by forcing specific neurons
to fire. For example, to force neuron 0 and 1 to fire synchronized at a steady
10Hz for 10 seconds one could do the following (ignoring firing output for the
time being):

stimulus = [0, 1]
for t in range (10000):
if t % 100 = O:
sim.step(stimulus)
else:
sim.step ()

The above shows the basic usage of the simulator. The user can perform other
actions on the simulation object as well including querying synapse data, and
use STDP.

For full details of library usage refer to the language-specific notes (Section 3)
and the online per-language function reference.

2 Simulation model

NeMo has a plugin system which can support different types of neurons. This
version ships with support for Izhikevich neurons (Section 2.1), Poisson spike
sources (Section 2.3), input neurons (Section 2.4), and delay-coupled Kuramoto
oscillators (Section 2.5).

2.1 Izhikevich neurons

Parameters a,b,c,d, o

State variables Uy V

Dynamics dv = 0.040% 4+ 5v + 140 —u + I + N(0,0?)
% =a(bv —u)

Fire v > 30

Reset V4=
u—u+d

Numerical integration Euler with step size of 0.25ms

The Izhikevich neuron model [2] consists of a two-dimensional system of ordinary
differential equations defined by

¥ =0.04v* + 50+ 140 —u + I (1)
= a(bv — u) (2)

with an after-spike resetting

V< C

if v >30mV, then{
u+—u-+d

where v represents the membrane potential and u the membrane recovery vari-
able, accounting for the activation of KT and the inactivation of Na™ providing
post-potential negative feedback to v. The parameter a describes the time scale
of the recovery variable, b describes its sensitivity to sub-threshold fluctuations,
c gives the after-spike reset value of the membrane potential, and d describes
the after-spike reset of the recovery variable. The variables a—d can be set so as
to reproduce the behaviour of different types of neurons. The term I in Equa-
tion 1 represents the combined current from spike arrivals from all presynaptic
neurons, which are summed every simulation cycle.

In addition to the basic model parameters a—d and state variables v and v, the
user can specify a random input current to each neuron. The input current is
drawn from A(0,0?%), where o is set separately for each neuron. If o is set to
zero, no input current is generated.

2.2 IF _curr_exp

Parameters Urest s Uresety Cm» Tm Trefracy TsynE» Tsynls Uthresh Ioffset
State variables v, g, It
f o dv _
Dynamics gf; = (Ig + It + Lofiset)/Cm + (Vrest — V) /Tm
d(%f - _[E/TsynE
TtI = _IE'/Tsan
Fire U 2 Vthresh
Reset VU 4 Ureset
Refractory period Trefrac

Numerical integration Euler

This integrate-and-fire neuron model with exponential decay implements the
standard neuron model in PyNN with the same name. Time-related paramaters
are expressed in terms of time steps (by default 1 ms). Ig and I; are the
incoming currents arising from exctatory and inhibitory PSPs resepectively.
During the refractory period the voltage stays constant.

2.3 Poisson spike source

Parameters A

State variables none
Dynamics none

Fire urand < A
Reset N/A

A Poisson spike source generates spikes according to a Poisson process with
parameter A\. During a single simulation cycle a Poisson spike source generates
either zero or one spike (with probability \). Inter-spike intervals are thus never
smaller than the time step, and A must be set taking into account the size of
the time step.

2.4 Input neuron

Parameters none
State variables none
Dynamics none
Fire user-specified
Reset N/A

An input neuron has no internal dynamics, but can be forced to fire (via the
step function). It can thus be used for neurons providing input to the network,
e.g. from a sensor.

2.5 Delay-coupled Kuramoto oscillators

Parameters w

State variables 0
Dynamics see below
Fire never
Reset: N/A

Numerical integration RK4

Kuramoto oscillators are not strictly neuron models, however they are sometimes
used for modelling neural synchronisation phenomena and fit reasonably well
into the framework of NeMo. There are significant differences with the common
spiking neuron framework, however. For example, oscillators never fire and
there is no notion of a membrane potential.

We implement a Kuramoto model with weighted couplings and delays. Each
oscillator is described by its phase 6, which is measured in radians and which
are always in the range [0,27). Each oscillator has an intrinsic frequency w at
which it oscillates in the absence of couplings.

Couplings between oscillators have a coupling strength (corresponding to synap-
tic weight in other models) and a phase lag (corresponding to conduction delay).

The model is described by

Cffti (T) = w; + Z Wi j sin(Gj (t - Tij) — ez(t))

where 0,(t) is the phase of oscillator ¢ at time ¢, and w; is the natural frequency
of oscillator ¢, and w;; and 7;; are the coupling strength and phase lag between
oscillators ¢ and j.

There is an intrinsic unit of time, with no physical meaning. Delays are ex-
pressed in term of this time step. The state is updated every time step using
fourth-order Runge-Kutta.

The phase history is initialised by running the model “backwards”. At the start
of simulation the phase of each oscillator is thus the value specified when the
oscillator was created, and previous phases have sensible values.

In the present version of NeMo the Kuramoto model should be considered ex-
perimental. The present version has the limitation that the in-degree of each
oscillator is limited to 1024.

2.6 Basic synapse model

Synapses are specified by a conductance delay and a weight. Conductance
delays are specified in whole milliseconds, with a minimum delay of 1 ms and
the maximum supported delay is to 64 ms.

Synapses can be either static or plastic, using spike-timing synaptic plasticity,
the details of which can be found in the next section.

2.7 STDP model

NeMo supports spike-timing dependant plasticity, i.e. synapses can change dur-
ing simulation depending on the temporal relationship between the firing of the
pre- and post-synaptic neurons. To make use of STDP the user must enable
STDP globally by specifying an STDP function and enable plasticity for each
synapse as appropriate when constructing the network. A single STDP function
is applied to the whole network.

Synapses can be either potentiated or depressed. With STDP enabled, the sim-
ulation accumulates a weight change which is the sum of potentiation and de-
pression for each synapse. Potentiation always moves the synaptic weight away
from zero, which for excitatory synapses is more positive, and for inhibitory
synapses is more negative. Depression always moves the synapses weight to-
wards zero. The accumulation of potentiation and depression statistics takes
place every cycle, but the modification of the weight only takes place when
explicitly requested.

Generally a synapse is potentiated if a spike arrives shortly before the postsy-
naptic neuron fires. Conversely, if a spike arrives shortly after the postsynaptic
firing the synapse is depressed. Also, the effect of either potentiation or de-
pression generally weakens as the time difference, dt, between spike arrival and
firing increases. Beyond certain values of dt before or after the firing, STDP
has no effect. These limits for dt specify the size of the STDP window.

The user can specify the following aspects of the STDP function:

e the size of the STDP window;
e what values of dt cause potentiation and which cause depression;

e the strength of either potentiation or depression for each value of dt, i.e.
the shape of the discretized STDP function;

e maximum weight of plastic excitatory synapses; and

e minimum weight of plastic inhibitory synapses.

Since the simulation is discrete-time, the STDP function can be specified by
providing values of the underlying function sampled at integer values of dt. For
any value of dt a positive value of the function denotes potentiation, while a
negative value denotes depression. The STDP function is described using two
vectors: one for spike arrivals before the postsynaptic firing (pre-post pair), and
one for spike arrivals after the postsynaptic firing (post-pre pair). The total
length of these two vectors is the size of the STDP window. The typical scheme
is to have positive values for pre-post pairs and negative values for post-pre
pairs, but other schemes can be used.

When accumulating statistics a pairwise nearest-neighbour protocol is used. For
each postsynaptic firing potentiation and depression statistics are updated based
on the nearest pre-post spike pair (if any inside STDP window) and the nearest
post-pre spike pair (if any inside the STDP window).

Excitatory synapses are never potentiated beyond the user-specified maximum
weight, and are never depressed below zero. Likewise, inhibitory synapses are
never potentiated beyond the user-specified minimum weight, and are never
depressed above zero. Synapses can thus be deactivated, but never change from
excitatory to inhibitory or vice versa.

2.8 Discrete-time simulation

The simulation is discrete-time with a fixed one millisecond step size. Within
each step the following actions take place in a fixed order:

1. Compute accumulated current for incoming spikes;
2. Update the neuron state;

3. Determine if any neurons fired. The user can specify neurons which should
be forced to fire at this point;

4. Update the state of the fired neurons
5. Accumulate STDP statistics, if STDP is enabled

2.9 Neuron and synapse indices

The user specifies the unique index of each neuron. These are just regular
unsigned integers. The neuron indices does not have to start from zero and lie
in a contiguous range, but in the current implementation such a simple indexing
scheme may lead to better memory usage.

Synapses also have unique indices, but these are assigned by the library itself.
Synapse indices are only required if querying the synapse state at run-time.

2.10 Numerical precision

The weights are stored internally in a fixed-point format (Q11.20) for two rea-
sons. First, it is then possible to get repeatable results regardless of the order in
which synapses are processed in a parallel setting (fixed-point addition is asso-
ciative, unlike floating point addition). Second, it results in better performance,
at least on the CUDA backend with older cards (device capability j 2.0), where
atomic operations are available for integer /fixed-point but not for floating point.
The fixed-point format should not overflow for synapses with remotely plausible
weights, but the current accumulation uses saturating arithmetic nonetheless.

Neuron parameters are stored as single-precision floating point.

3 Application programming interface

NeMo is implemented as a C++ class library and can thus be used directly in pro-
grams written in C++. There are also bindings in C (Section 3.2), Python (Sec-
tion 3.3), and Matlab (Section 3.4). The different language APIs follow largely
the same programming model. The following sections specify the language-
specific issues (linking, naming schemes, etc) while full function reference docu-
mentation can be found in the online documentation for C++, C, and Python.

http://nemosim.sourceforge.net/api/index.html
http://nemosim.sourceforge.net/api/nemo_8h.html
http://nemosim.sourceforge.net/python/nemo.html

3.1 C++ API

The C++ API is used by including the header file nemo.hpp and linking against
the nemo dynamic library (1ibnemo.so or nemo.d1l).

All classes and functions are found in the nemo namespace. Class names use
initial upper-case. Function names use camelCase with initial lower-case letter.

The library is not thread safe.

Errors are reported via exceptions of type nemo: :exception. These are sub-
classes of std::exception, so a descriptive error messages is availble using
const char* nemo::exception::what(). Additionally, internally generated
exceptions also carry an error number (int nemo: :exception: :errorNumber())
which are listed in <nemo/types.hpp>. If disambiguation between different
NeMo-generated error types is not required, it is sufficient to simply catch std: :exception&.

The following code snippet shows basic usage. The NeMo distribution contains
an example directory with more advanced examples.

#include <nemo.hpp>

try {
nemo : : Network net;
net.addNeuron(0,0.02,0.20,-61.3,6.5,-13.0,-65.0,0.0) ;
net.addNeuron(1,0.06,0.23,-65.0,2.0,-14.6,-65.0,0.0) ;
net.addSynapse(0, 1, 10, 1.0, true);
net.addSynapse(1, 0, 1, -0.5, false);

nemo: : Configuration conf;

boost ::scoped_ptr<nemo::Simulation>
sim(nemo::simulation(net, conf));

for (unsigned ms=0; ms < 1000; ++ms) {

const vector<unsigned>& fired = sim->step();
for(vector<unsigned>::const_iterator n = fired.begin();
n != fired.end(); ++n) {

cout << ms << " " << *n << endl;
}

} catch(exception& e) {
cerr << e.what() << endl;

10

3.2 C API

The C API follows the general object-model as outlined above.

To use the C API, include the header file nemo.h instead of nemo.hpp, and then
link to libnemo.

All names use lower case and are separated by underscores. Both function and
type names are prefixed ‘nemo_‘ and type names are also suffixed ‘_t*.

In the C API the network, configuration, and simulation objects are controlled
via opaque pointers with typedefed names nemo_network_t, nemo_configuration_t,
and nemo_simulation_t. These objects are generated with methods nemo new_x

(x = network, configuration, or simulation), and should be explicitly de-
stroyed with the corresponding methods nemo_delete_x.

Methods on specific objects take the relevant opaque pointer as the first param-
eter.

Error handling is done via return codes. All API functions return a value of
type nemo_status_t, which will be NEMO_OK if everything went fine and some
other value (see <nemo/types.h>) otherwise.

The C API is not thread-safe.

The following C program program snippet shows basic usage of the NeMo library
(without any error handling):

#include <nemo.h>

nemo_network_t net = nemo_new_network();
nemo_add_neuron (net ,0,0.02,0.20,-61.3,6.5,-13.0,-65.0,0.0);
nemo_add_neuron (net ,1,0.06,0.23,-65.0,2.0,-14.6,-65.0,0.0);
nemo_add_synapse (net, 0, 1, 10, 1.0, true);
nemo_add_synapse(net, 1, 0, 1, -0.5, false);

nemo_configuration_t conf = nemo_new_configuration();
nemo_simulation_t sim = nemo_new_simulation(net, conf);

for (unsigned ms=0; ms < 1000; ms++) {
unsigned *fired, nfired;
nemo_step (sim, NULL, O, NULL, NULL, O, &fired, &nfired);
for (unsigned i=0; i < nfired; i++) {
printf ("Juy%u\n", ms, nfired[i]);
}
+

nemo_delete_simulation(sim) ;
nemo_delete_configuration (conf);
nemo_delete_network (net);

Note that the step function has arguments for providing firing stimulus and

11

input current stimulus, but that these are unused here.

12

3.3 Python API

The Python API for NeMo provides an object-oriented interface that closely re-
flects the underlying C++ class library. The module nemo contains the three
objects Network, Configuration, and Simulation. The interface layer is im-
plemented using boost: : python, the support library of which is statically linked
in. Function names are all lower_case _with_underscores.

Setup When installing the base NeMo library (see Section 4), the Python wrap-
per is installed to a subdirectory of the main installation path (Table 1). This
contains a distutils setup script, which installs the module initialization file
to the appropriate location in the system’s Python installation. Run python
setup.py install to perform this installation, after which import nemo should
work. Alternatively, the NeMo-related files can be left in the NeMo-specific instal-
lation directory. The Python path then has to be set manually to include the rel-
evant path from Table 1, either by setting the environment variable PYTHONPATH,
or within a script/session by calling sys.path.append.

Platform Default installation path
Windows C:\Program Files\NeMo\Python
Linux /usr/share/nemo/python

Table 1: Default Python API installation path.

PyNN Python users may be interested in using the PyNN interface to NeMo.
PyNN [1] is a common API for a number of spiking neural network simulators
including NEURON, NEST, PCSIM and Brian. This interface provides more
complex connection patterns, and more refined control of neuron popluations
than the low-level API used by NeMo. PyNN operates with a number of standard
neuron models. NeMo currently only supports the Izhikevich model. To use
PyNN, ensure the nemo module is installed and on the python path, and then
do from pyNN.nemo import *. PyNN is a separate larger project, which is
fully documented online.

Help The classes and functions in the nemo module are documented using
standard docstrings, so a full function reference is available from within an
interactive session.

Error handling Errors generated by NeMo result in a RuntimeError in the
Python layer.

Usage example The general pattern of usage is

1. create a configuration object and configurate as appropriate;

13

http://neuralensemble.org/trac/PyNN

2. create a network object and populate with neurons and synapses; and

3. create a simulation from the configuration and network objects and run
the simulation

The following code shows a simple example constructing a network of 1000 fully
connected neurons, simulating it for one second, and printing the indices of the
fired neurons.

Note that the construction methods Network.add neuron and Network.add_synapse
supports an arbitrary mix of scalar and list arguments. Other methods, such as
neuron getters and setters support the same type of arguments.

14

3.4 Matlab API

The Matlab API provides a modal functional interface, rather than the object-
oriented interface of the underlying C++ library. The user manipulates a single
network and a single simulation, and is either in the construction/configuration
mode or in the simulation mode. Functions use camelCased identifiers, and are
prefixed with ‘nemo’.

During construction/configuration the user can set global configuration param-
eters, add or modify neurons, and add or modify synapses. There is a single im-
plicit network, which can be cleared by calling nemoClearNetwork. The global
configuration can be reset to defaults by calling nemoResetConfiguration.

Simulation mode is entered by calling nemoCreateSimulation. During sim-
ulation mode the user can step through the simulation, providing stimulus as
appropriate, read or modify the neuron state, and read the synapse state. When
a simulation is complete, configuration/construction mode is entered again by
calling nemoDestroySimulation. Note that after destroying the simulation, the
network is in the same state as before the simulation was started.

Help is available for each function using Matlab’s regular help system, i.e. via
calls such as help nemoAddNeuron and help nemoStep. A top-level help entry
is available under help nemo, which gives a brief overview and lists the available
functions.

Internal NeMo errors result in regular Matlab errors, (i.e. as when error is called
in a script). These errors use identifier nemo: api for basic usage errors for input
and output arguments, nemo:backend for errors within the NeMo library itself,
and nemo:mex for internal errors in the MEX layer.

The Matlab path must contain the directory with the m-files defining the avail-
able functions and the MEX library that interfaces with libnemo (Table 2. Use
addpath from within Matlab to set this path.

Platform Default installation path
Windows C:\Program Files\NeMo\Matlab
Linux /usr/share/nemo/matlab

Table 2: Default Matlab API installation path.

Additionally, the NeMo libraries (plus any dependencies such as possibly the
CUDA runtime library) needs to be on the system path. Note that this is
different from the Matlab path. If the system path is not set correctly Matlab
will issue a rather unhelpful message about the MEX-file being invalid.

Note that on Linux Matlab does its own loading of C++ standard libraries (to
use the version used when Matlab was built). Unless the stars are aligned just
so this standard library version will be different from the default C++ standard
libraries on the system (which NeMo should have been built against), resulting
in an error when loading the MEX file. This can be fixed by setting LD_PRELOAD
by doing something like this

15

If using NeMo installed from a binary package, ensure that the architecture
(32/64-bit) matches that of Matlab. A mismatch will mean the Matlab bindings

won’t work.

before starting Matlab.

The following shows a simple Matlab session using NeMo to set up a network of
1000 fully connected neurons, simulate this network for one second, and print
the firing pattern:

Note that a number of the functions are vectorised and accepts a mix of scalar
and vector arguments. For example, the calls to nemoAddSynapse create 1000
synapses which share some parameters but have unique weights.

4 Installation

4.1 Windows

The easiest way to install is by using the precompiled library (NSIS installer).
This installs NeMo to C:\Program Files\NeMo, with libraries in the bin sub-
directory and headers in the include subdirectory, Python bindings, Matlab
bindings, and examples are stored in separate subdirectories. Note that binary
installer may be built against a specific version of CUDA, as well as for a partic-
ular architecture (32-bit vs 64-bit). If the binary installer does not match your
system, building from source might be the best option.

Alternatively, the library can be built from source using cmake to generate a
Visual Studio project file, and then building from within Visual Studio (see
Section 4.4). Builds in Cygwin or MSys/MinGW have not been tested.

4.2 Linux

There are no precompiled binaries for linux, so the library should be built from
source using cmake. By default, headers are installed to /usr/local/include,
the library files to /usr/local/lib, Python bindings, Matlab bindings, exam-
ples and documentation to subdirectories of /usr/local/share/nemo.

4.3 0OSX

The easiest way to install is by using the precompiled library (PackageMaker
installer). By default, headers are installed to /usr/include, library files are
installed to /usr/lib, while Python bindings, Matlab bindings, examples and
documentation are found in subdirectories of /usr/share/nemo. While the
installer allows changing the install path, this may lead to runtime in the current
version. Alternatively, the library can be built from source using cmake and the
GNU build tools (see Section 4.4).

4.4 Building from source

NeMo relies on several boost libraries. Most of these are header-only, but the fol-
lowing non-header libraries are also required: program options, filesystem,
and date_time. On Linux/OSX the 1ibltdl is required for plugin loading. Ad-
ditionally the following dependencies may be needed depending on what cmake
configuration options are set:

17

Feature cmake option Dependency

CUDA backend NEMO_CUDA_ENABLED Cuda toolkit
Python bindings NEMO_PYTHON_ENABLED boost python
Matlab bindings NEMO_MATLAB_ENABLED Matlab (including the

mex compiler)

The basic cmake build procedure is

cd <nemo-directory>
mkdir build

cd build

cmake

make

sudo make install

References

[1] A. P. D. Daniel, Bruderle, J. M. Eppler, J. K. Eilif, M. Dejan, P. Laurent,
and P. P. Yger. PyNN: a common interface for neuronal network simulators.
Frontiers in Neuroinformatics, 2, 2008.

[2] E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural
Networks, 14:1569-1572, 2003.

18

	A short tutorial introduction
	Constructing a network
	Creating a configuration
	Creating and running a simulation

	Simulation model
	Izhikevich neurons
	IF_curr_exp
	Poisson spike source
	Input neuron
	Delay-coupled Kuramoto oscillators
	Basic synapse model
	STDP model
	Discrete-time simulation
	Neuron and synapse indices
	Numerical precision

	Application programming interface
	C++ API
	C API
	Python API
	Matlab API

	Installation
	Windows
	Linux
	OSX
	Building from source

